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Sequential decoding has been found to be an efficient means of communicat-
ing at low undetected error rates from deep space probes, but a failure mecha-
nism known as erasure or computational overflow remains a significant problem.
The erasure of a block occurs when the decoder has not finished decoding that
block at the time that it must be output.

A recent article developed a technique for scheduling the operations of a
sequential decoder which has the potential for significant reduction in erasure
probability relative to a decoder with the same parameters and using the conven-
tional method of scheduling. Performance results reported previously depend
upon the accuracy of an accepted model for the number of computations needed
to decode a block of data. This article presents a reevaluation of decoder per-
formance using actual sequential decoding data. Results are generally unchanged:
a decoder with a 10-block buffer will achieve less than a 10~ erasure probability
with the new scheduling technique whenever a similar decoder had achieved less
than a 10~ erasure probability in conventional operation.

I. Introduction

A recent article (Ref. 1) described the characteristics
of a buffer memory management strategy for sequential
decoding which is capable of significantly reducing
erasure probability for fixed values of speed advantage,
buffer size, etc. Both the analytic work and the simula-
tion results presented there relied upon a hypothesized
theoretical distribution for the number of decoder com-
putations needed to decode a fixed-length block of data.
Subsequent work, described herein, has focused upon
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the behavior of the memory management algorithm with
real data from a sequential decoder, and in determining
the distribution of per-block computations for sequential
decoding. Although the hypothesized distribution of de-
coding is not, in fact, completely correct, the results ob-
tained previously for sequential decoding with feedback
queuing memory management (FBQM) are essentially
unchanged; i.e., for a decoder with a speed advantage
of 10 and buffer size of 10 blocks operating with an
erasure probability of 10-%, use of the FBQM technique
reduces the erasure probability to less than 10
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ll. The Distribution of Computations-per-Block
for Sequential Decoding

It is well established that the number of computations
¢ performed by a sequential decoder in incrementing by
one the number of bits for which a local estimate has
been made has a Pareto distribution, i.e.,

Pr{c >N} ~ kN~ (1)

The exponent a is a positive increasing function of the
bit signal-to-noise ratio E,/N,. The constant k has been
estimated by Hellex (Ref. 2, p. 41) to be 1.9.

The distribution of the number of computations C,,
required to decode a block of length L has not been
extensively studied, owing in large part to the amount
of time required to decode enough blocks to obtain a
statistically accurate estimate of this parameter. Since
it is C;, which determines the performance of a decoder
using FBQM, the performance evaluation of FBQM,
and accurately determining the distribution of C, are
essentially the same problem. Previous work on determin-
ing the distribution of C,, has established that it is lower
bounded by a linear function of L (Refs. 3 and 4); i.e.,

Pr{C, >N} = kL N- @)

The parameters k and « are as before. Additional argu-
ments have tended to show that Eq. (2) is both a lower
bound and a reasonable approximation to the distribu-
tion of C;. The simulations to be presented here, per-
formed with block lengths of 256 and 1024 bits, show
that the best first-order approximation to the distribution
of C,, is instead

Pr{C, > N} ~ k(N/L)< 3)

The parameters k and o are as before. A more accurate
approximation with a wide range of applicability was
used in the FBQM simulations, discussed in Section IV.
This approximation is shown in the solid lines in Fig. 1.

The dotted lines in Fig. 1 represent an experimental
distribution of computation-per-block for the decoding
of blocks of length 1024 bits. Each line resulted from
approximately 15 h of decoding on a Sigma 5, using a
program which emulates the operations of the high-
speed multi-mission sequential decoder (Ref. 5). The
software simulation was used because of the existence
of instrumentation within it to measure the desired pa-
rameter. Sample-sizes range from 3 X 102 blocks at the
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lowest signal-to-noise ratios (SNRs) up to 10* blocks at
the highest. The list of the number of computations
required to decode each block in the sample set was
sorted to define the experimental distribution function.
The dots appearing in Fig. 1 correspond to samples
from this list spaced approximately uniformly in the
computation variable.

At low signal-to-noise ratio, the experimental distribu-
tion is closely approximated by the simple Pareto dis-
tribution of Eq. (3) with k~3 and a as defined from
theory. This approximation is poor at high signal-to-noise
ratios where the distribution exhibits two distinct be-
havior patterns dependent upon the range of the com-
putation variable being considered. At relatively large
values the distribution is roughly Paretian, as in Eq. (3),
with approximately the correct exponent, but with a
very small value of k. At small values of the computation
variable, if the distribution is assumed to be Paretian,
the apparent exponent is much higher than the per-bit
computation exponent. This seeming anomaly can be
explained on the basis of the following model for per-
block computation. (A similar model was used in Ref. 4.)
Let us divide the block into a number of sub-blocks,
each one of which is entered and exited on the correct
path, and suppose that the distribution of computations
for each sub-block is given by Eq. (3), with L replaced
by L, the sub-block length. Both the exponent o and
the lengths of the sub-blocks L, depend on the signal-
to-noise ratio. Each sub-block is terminated by a se-
quence of bits for which no searching is required; for
which the initial best-bit estimate is correct; and which
is never changed by back-tracking. As such, they repre-
sent independent regions of decoding computation. The
number of computations needed to decode a block is
thus the sum of several independent variables: the num-
ber of computations needed to decode each of the com-
ponent sub-blocks. At low signal-to-noise ratios, the
sub-block length L, is large—so large, in fact, that there
is only one sub-block in the complete block, and the
computation distribution for the entire block is well
approximated by Eq. (3). At higher signal-to-noise ratios,
the sub-block length decreases, so that several sub-blocks
exist within a block of 1024 bits. When a number of
independent Pareto random variables are added, large
values of the sum occur most likely as a result of one
large component value. Contrarily, small values would
arise as sums of small values on each of the sub-blocks.
The result is that for small values of the computation
variable, the distribution falls off rapidly; more in the
manner of a gaussian distribution than Pareto, as indeed
the true distribution does.
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If the model just proposed is valid, the distribution
of computation for other block lengths will differ in a
specific fashion from the distribution in Fig. 1. For
shorter block lengths, the SNR above which the two-part
distribution exists is higher than the SNR threshold for
the same effect with 1024 bit blocks, because the typical
sub-block length must be less than the block length for
the averaging of shorter computations to take place.
This appears to have happened in Fig. 2, which shows
the experimental computation distribution for a block
length of 256 bits. The averaging effect has only begun
to be apparent at E,/N, = +3.5 dB with the shorter
block length, whereas the appearance is at about 2.25 dB
with 1024 bits/block.

The solid lines in Fig. 1 represent a constructive
approximately least-square error fit to the experimental
distributions on the same figure. Since the primary pur-
pose in determining an analytical formulation for the
distribution was to generate pseudo-random variables
with that distribution, the function fitted determines the
computation variable from the probability value, rather
than vice versa. The computation variable is segmented
into two parts, C, = C; + C,. Each part, C;, has a dis-
tribution given by

Pr{C; > N,} = 1/(1 + ki(R)(N/L)x®) (4)

The values, ki(R) and «;(R), are slowly varying functions
of the bit SNR, R(in dB), and L is the block length
= 1024. The C; are treated as if completely dependent
random variables, so that determining either determines
the other, and hence their sum. The constants have been
computed so that, in general, C, fits well to the compu-
tation distribution for large values of the computation
variable; C, fits the distribution for small values; and
their sum fits quite well over the entire range. The
parameter values which resulted from a computer-aided
search are

k, = 0.1069 + 0.7651 * exp [2.98 * (Eo/N,)]

a, = 1.327 4 0.583 « (E,/N,)

k, = 1.07 » 106 + 2.84 + 10 « exp [3.776 + (E,/N,)]
a, = 13.1 + 6.67 » (Eo/N,)

(5)

for the 1024 bit blocks. No attempt has been made to
fit a similar distribution to the experimental data for the
956 bit blocks. The intent here was not to exhaustively
study the computation behavior of sequential decoding,
but to assist in the evaluation of the performance of
sequential decoding with FBQM.
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Il. Decoding With a Magic Genie

Two hypothetical magic genie-aided decoders were
analyzed in Ref. 1. Before proceeding further, we will
present revised versions of those analyses using as a
basis the first-order approximation to the computation
distribution in Eq. (3). Both decoders are able to perform
u computations during the time one bit is being received
and have an infinitely large buffer to hold data waiting
to be decoded.

The magic genie which aids the first decoder is benev-
olent and informs the decoder before starting decoding
each block whether it should or should not decode that
block in order to minimize the fraction of blocks erased.
That is, the genie identifies to the decoder those blocks
for which the total computation requirement is above a
threshold, T,. On the average, the number of computa-
tions available to decode each block is p*L while the
number actually expended is

ﬁ "N dP(N)

where P(N) = Pr{C, > N}. Since the number of compu-
tations expended cannot exceed the supply, and the
decoder is doing as well as possible, T, is the largest
value for which the following relation holds.

f "N dP(N) < p*L (6)

The parameter of interest is P(T,), the fraction of blocks
erased by this decoder. Using Eq. (3) for P(N), we find

p(To) = exp (—p/k) a=1

P(T) = [1 et (L a)]—fi—a Ry

For a> 1, P(T,) can be made zero by making u suffi-
ciently large.

The magic genie which aids the second decoder is
whimsical and only informs the decoder that it should
erase a block after it has expended as much computa-
tional work toward decoding an erased block as in
decoding the most difficult block which does get de-
coded. In this case all blocks requiring more than T,
units of computation are erased after having received
T, units. Using the requirements that computation ex-
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pended cannot exceed the supply, T, is the largest value
for which the following inequality holds.

T.P(T,) + f " NAP(N) < p*L 8)

The erasure probability is P(T,).

a=1

a1

P(T,) = exp [~ {(uw/k) — 1}]

(9)

P(T,) = [k=/*(1 — o) + o]0

For a > 1, P(T,) can be made arbitrarily small by mak-
ing p sufficiently large.

IV. Simulated Performance of a Practical Decoder

A practical decoder which performs similarly to the
hypothetical decoder aided by the whimsical genie can
be developed by treating the problem of allocating the
decoder’s efforts as time-sharing processor allocation
problem (Ref. 6). We observe that for a Pareto distribu-
tion of computation, the block which is most likely to
be completely decoded by applying to it Ac computa-
tions is that block which has received the least amount
of computation among all of those undecoded blocks
in the buffer.

Decoder operation is as follows: The decoder begins
decoding on each block immediately after it is received.
If it is not completely decoded by the time the next
block becomes available, it is labeled as having received
p*L computations and is stored in the buffer. If decod-
ing is completed before the next block is available, the
block in storage which has received the least amount of
computation is brought out and decoding performed
upon it until either the next new block is available, or
until this block too has been decoded. A flow-chart of
this process was given in Ref. 1, Fig. 1.

This memory management scheme was recently sim-
ulated in two ways using the decoding data set discussed
in Section II. Initially, this data was fed directly into
the memory management model with various values for
speed advantage and buffer size. Since the sample-sizes
obtained from the decoder simulations were too small
to adequately mask the “end-effects” due to the starting
and stopping of the memory management process, an-
other sequence of simulations were performed using
pseudo-random data generated to conform to the dis-
tribution families described by Eq. (4) and (5). The re-
sult of this latter simulation is the family of performance

JPL TECHNICAL REPORT 32-1526, VOL. IX

curves in Fig. 3. At all values of speed advantage con-
sidered, FBQM provides a considerable improvement
over the linear buffer strategy at erasure rates of 10-2
and below.

The curves in Fig. 4 represent a comparison between
performance data obtained using pseudo-random data
with the distribution of Egs. (4) and (5), and using the
actual sequential decoding data. The solid lines repre-
sent 10° blocks of pseudo-random data at E,/N, = 3.0 dB.
The circles represent approximately 5 X 10¢ blocks of
simulated sequential decoder data at E;/N, = 3.0 dB.
Most of the difference can be explained on the basis of
the small sample size: Either buffer management scheme
is capable of abandoning a buffer-full (in this case 10
blocks) of data when the simulation is abruptly termi-
nated, and the FBQM process has a relatively high prob-
ability of doing so. A partial verification of this assertion
can be found in the triangular marks in Fig. 4 which
represent the result of treating the 5 X 10® actual decod-
ing samples as a finite population from which 10° samples
are drawn with replacement. Even with this device for
extending the apparent sample size, the tails of the dis-
tribution are only represented as well as is done by the
smaller sample size. However, if the fitted distribution
function has been built correctly, the tails should be
accurately represented at any sample size, and hence
the performance curves of Fig. 3 more accurately reflect
the performance to be achieved in practice than per-
formance curves derived directly from the samples of
the sequential decoder computation variable.

Another view of the performance difference between
the FBQM process and linear buffer management can
be gained by considering the SNR required for a de-
coder with a given speed advantage to achieve some
fixed erasure rate, e.g., 5 X 10-% or 5 X 10, This is shown
in Fig. 5. A performance advantage in excess of 0.5 dB
is evident for a wide range of speed advantage.

V. Time-Sequence Un-Scrambling

It should be apparent from the behavior of the FBQM
algorithm that it possesses one drawback which could
seriously detract from its usefulness. That is, that de-
coded blocks do not emanate from the decoder in strict
time-sequence but are reordered and delayed an amount
which depends upon the difficulty encountered in decod-
ing. If the data is spacecraft video, the reordering should
pose little difficulty, as it would be a relatively small
increment to the already extensive picture processing.
Other potential users might well be deterred by the
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reordering, so it is worthwhile to consider a combination
FBQM decoder and unscrambler which emits decoded
data blocks in the same order as the corresponding un-
decoded data is received.

Suppose a decoder has been implemented using FBQM
which performs with essentially zero erasure probability,
and suppose that the output of this machine is the input
to a buffering machine capable of holding N blocks of
decoded data. An erasure occurs in this combination
whenever the buffer is filled with blocks mm + 1,---,
m + k, and block m — 1 has not yet been output from
the decoder. Let us assume that the decoder and un-
scrambler buffers were empty when block m —1 was
received, and that blocks mm + 1,---;m + N —1 re-
quired negligible effort to decode. Under these circum-
stances, the probability that block m — 1 is erased is
the probability that the number of computations needed
to decode block m — 1 exceeds N*u*L, the number of
computations that can be performed while blocks
mm+ 1,--m+ N —1 are being received. This is, in
effect, a lower bound on the probability that block
m — 1 is erased. Using Eq. (3):

Py < k(N*u) (10)

Suppose instead of the FBQM decoder/unscrambler
combination we substitute a decoder with linear buffer
management which has the same number of bits of stor-
age as the unscrambler had. If the code rate is 1/v and
the received symbols are quantized to 3-bits each, that
memory is now able to store N/(3*) blocks of data.
Assuming that this buffer is empty when block m — 1
is received, the probability of erasing it is the proba-
bility that it requires more than N*u*L/(3*y) compu-
tations.

P 2k (N*u/(3%))® (11)

The assumptions in both cases are approximately equiv-
alent: both saying that long computations are isolated
events.

It remains to estimate or eliminate the buffer in the
FBQM decoder itself. If it is negligible, the FBQM
decoder/unscrambler pair will be equivalent to a normal
sequential decoder with 3*y times as much memory! We
can, in fact, force a dynamic trade-off between storage
utilized by the FBQM decoder and storage utilized by
the unscrambler, by fixing their total size in bits, and
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erasing the oldest block or blocks whenever needed
storage for an incoming block is not available. The
memory, e.g., would be capable of holding 10 blocks of
raw partially decoded data, or 70 blocks of fully decoded
data, or any integer solution in between. This is a rela-
tively simple modification to the FBQM algorithm, re-
quiring the addition of an information chain which
identifies the age of each block in storage, and the
storage of decoded data from completely decoded blocks
until the undecoded blocks which are older are either
decoded or erased. This modified FBQM algorithm has
been simulated using pseudo-random data for several
SNR values. The results for E;/N, = 3.0 dB are shown
in Fig. 6 where they are compared to the full FBQM
and to a linearly buffered decoder. With the rate 1/2
code simulated, the FBQM/unscrambler combination is
equivalent to a linearly managed decoder with approxi-
mately a threefold increase in buffer-size at higher values
of p. Since a sixfold increase is conceptually possible, a
different algorithm could perhaps be found for decoder
scheduling which would show significant improvement
over the FBQM/unscrambler combination, and still sat-
isfy the time-sequence constraint.

Vi. Summary

This article has presented the results of a sequence
of simulations intended to evaluate the performance of
a sequential decoder employing the FBQM memory
management algorithm. A model for the number of com-
putations required to decode a fixed-length block of data
was also developed to aid in the evaluation. Performance
curves for the FBQM decoder have been presented
which show that significant performance improvements
are possible: i.e., reduction by 0.5 dB in the value of
E3/N, required to achieve an erasure rate of 102 or a
reduction in erasure rate of from 10-2 to 10 by the addi-
tion of the feedback queuing memory management
strategy, with all other decoding parameters held constant.

A brief discussion was also presented of the problems
associated with the reordering into strict time-sequence
of the FBQM decoder output data. It was shown that
even if this unscrambler must share memory with the
FBQM decoder itself, a performance improvement
equivalent to a better than threefold increase in buffer
size is possible, relative to a strictly linear-management
decoder.

For JPL’s Deep Space Network, however, a preferable

solution would seem to be a FBQM decoder in the
DSSs cascaded with a separate unscrambler in the net-
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work control center. The data rate out of the FBQM  siderably larger descrambler buffer could be acquired
decoder is as low as can be achieved—the true data rate  for the central facility than could be deployed at each
from the spacecraft, and for a fixed dollar outlay, a con-  of the affected DSSs.
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